Enhancement of polarizabilities of cylinders with cylinder-slab resonances

نویسندگان

  • Meng Xiao
  • Xueqin Huang
  • H. Liu
  • C. T. Chan
چکیده

If an object is very small in size compared with the wavelength of light, it does not scatter light efficiently. It is hence difficult to detect a very small object with light. We show using analytic theory as well as full wave numerical calculation that the effective polarizability of a small cylinder can be greatly enhanced by coupling it with a superlens type metamaterial slab. This kind of enhancement is not due to the individual resonance effect of the metamaterial slab, nor due to that of the object, but is caused by a collective resonant mode between the cylinder and the slab. We show that this type of particle-slab resonance which makes a small two-dimensional object much "brighter" is actually closely related to the reverse effect known in the literature as "cloaking by anomalous resonance" which can make a small cylinder undetectable. We also show that the enhancement of polarizability can lead to strongly enhanced electromagnetic forces that can be attractive or repulsive, depending on the material properties of the cylinder.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact polarizability and plasmon resonances of partly buried nanowires.

The electrostatic polarizability for both vertical and horizontal polarization of two conjoined half-cylinders partly buried in a substrate is derived in an analytical closed-form expression. Using the derived analytical polarizabilities we analyze the localized surface plasmon resonances of three important metal nanowire configurations: (1) a half-cylinder, (2) a half-cylinder on a substrate, ...

متن کامل

Extraordinary optical reflection from sub-wavelength cylinder arrays.

A multiple scattering analysis of the reflectance of a periodic array of sub-wavelength cylinders is presented. The optical properties and their dependence on wavelength, geometrical parameters and cylinder dielectric constant are analytically derived for both s- and p-polarized waves. In absence of Mie resonances and surface (plasmon) modes, and for positive cylinder polarizabilities, the refl...

متن کامل

An Exact Elastodynamic Solution for Func-tionally Graded Thick-Walled Cylinders Subjected to Dynamic Pressures

In the present paper, an exact solution for transient response of an infinitely long functionally graded thick-walled cylinder subjected to dynamic pressures at the boundary surfaces is presented for arbitrary initial conditions. The cylinder is assumed to have a plane-strain condition and the dynamic pressures are assumed to be imposed uniformly and axis...

متن کامل

Sub-Wavelength Resonances in Metamaterial-Based Multi-Cylinder Configurations

Sub-wavelength resonances known to exist in isolated metamaterial-based structures of circular cylindrical shape are investigated with the purpose of determining whether the individual resonances are retained when several of such resonant structures are grouped to form a new structure. To this end, structures consisting of 1, 2 and 4 sets of metamaterial-based concentric cylinders excited by an...

متن کامل

Semi-analytical Solution for Time-dependent Creep Analysis of Rotating Cylinders Made of Anisotropic Exponentially Graded Material (EGM)

In the present paper, time dependent creep behavior of hollow circular rotating cylinders made of exponentially graded material (EGM) is investigated. Loading is composed of an internal pressure, a distributed temperature field due to steady state heat conduction with convective boundary condition and a centrifugal body force. All the material properties are assumed to be exponentially graded a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015